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Abstract. The extensible markup language XML has become the de faate st
dard for information representation and interchange onrkernet. XML pars-
ing is a core operation performed on an XML document for itécalscessed and
manipulated. This operation is known to cause performamttebecks in ap-
plications and systems that process large volumes of XMh.d&k believe that
parallelism is a natural way to boost performance. Leverggnulticore proces-
sors can offer a cost-effective solution, because futurkticove processors will
support hundreds of cores, and will offer a high degree ddipelism in hardware.
We propose alata parallelalgorithm calledParDOM for XML DOM parsing,
that builds an in-memory tree structure for an XML docum&airDOM has two
phases. In the first phase, an XML document is partitionexidhtinks and parsed
in parallel. In the second phase, partial DOM node tree iras created during
the first phase, are linked together (in parallel) to buildoanplete DOM node
tree. ParDOM offers fine-grained parallelism by adopting a flexible chingk
scheme — each chunk can contain an arbitrary number of staktrzd XML tags
that are not necessarily match&®hrDOM can be conveniently implemented us-
ing a data parallel programming model that supposg andsort operations.
Through empirical evaluation, we show thRarDOM vyields better scalability
than PXP [23] — a recently proposed parallel DOM parsing ritigm — on com-
modity multicore processors. FurthermoRarDOM can process a wide-variety
of XML datasets with complex structures which PXP fails togea

1 Introduction

The extensible markup language XML has become the de faartdatd for information

representation and exchange on the Internet. Recent yagsilitnessed a multitude of
applications and systems that use XML such as web servickssamice oriented archi-
tectures (SOAS) [16], grid computing, RSS feeds, ecommates, and most recently
the Office Open XML document standard (OOXML). Parsing is eeaperation per-

formed before an XML document can be navigated, queried,aripulated. Though

XML is simple to read and process by software, XML parsingfismreported to cause
performance bottlenecks for real-world applications [22], For example, in a SOA
using web services technology, services are discoveredyibed, and invoked using
XML messages [10]. These messages can reach up to severabyteg)in size, and
thus parsing can cause severe scalability problems.



Recently, high performance XML parsing has become a topioosiderable inter-
est .9, XML Screamer [19], schema-specific parser [11], PXP [23, Rarabix [7]).
XMLScreamer and schema-specific parser leverage scheoraiation for optimizing
tasks such as scanning, parsing, validation, and degatialh. On the other hand, PXP
and Parabix exploit parallel hardware to achieve high XMkspay performance. Our
work in this paper also exploits parallel hardware to achieigh parsing performance.

With the emergence of large-scale throughput orientedionu processors [26][15],
we believe parallelism is a natural way to boost the perfarceaof XML parsing.
Leveraging multicore processors can offer a cost-effeatray to overcome the scala-
bility problems, given that future multicore processordl sipport hundreds of cores,
and thus, offer a high degree of parallelism in hardware. fa giarallel programming
model offer numerous benefits for future multicore processach as expressive power,
determinism, and portability [12]. For instance, traditiddthread-based approaches suf-
fer from non-deterministic behavior and make programmiifficdlt and error prone.
On the contrary, a program written in a data parallel languagy, Ct [13]) has deter-
ministic behavior whether running on one core or hundre@&sor his eliminates data
races and improves programmer productivity. Thus, thesdiegn a surge of interest to
develop data parallel models for forward scaling on fututétimore processors [8, 12].

With these factors in mind, we proposedata parallel XML parsing algorithm
calledParDOM. In this paper, we focus cKML DOM (Document Object Model)
parsing [30], because it is easy to use by a programmer and providesaugation
support to an application, and it is widely supported in epearce and commercial
tools .g, SAXON [18], Xerces [3], Intel Software Suite [1], MSXML [R]Further,
DOM parsing poses a fundamental challenge of parallel toesteuction. Since DOM
parsing requires documents to fit in main memory, we only arsXML documents
that are of several megabytes in size.

ParDOM is a two-phase algorithm. In the first phase, an XML documeuiairti-
tioned into chunks and are parsed in parallel. In the sectiadey partial DOM node
tree structures created during the first phase, are linkgetier (in parallel) to build a
complete DOM node tree in memory. Our algorithm offers fimahged parallelism by
adopting a flexible chunking scheme. Unlike a previous felralgorithm called PXP
[23,24], wherein chunks represent subtrees of a DOM tPaeDOM creates chunks
that can contain an arbitrary number of start and end XML thgbare not necessarily
matched.ParDOM can be conveniently implemented using a data parallel progr
ming model that supportsap andsort operators. Through empirical evaluation, we
show thatParDOM Yyields better scalability than PXP on commodity multicoreqes-
sors. Furthermord?arDOM can process a wide-variety of XML datasets with complex
structures which PXP fails to parse.

2 Background & Motivation

2.1 XML Documentsand Parsing Techniques

An XML document contains elements that are representeddy ahd end element
tags. Each element can contain other elements and valuesleArent can have a list
of (attribute, value) pairs associated with it. An XML docemt can be modeled as an



ordered labeled tree. A well-formed XML document follows iKML syntax rules. For
example, each element has a start tag and a matching end tag.
For an XML document to
be accessed and manipulated,
Root Element |book it should first be parsed. Many
XML parsing models have been
developed that trade off between
the ease of use, APIs exposed to
applications, memory footprint,
parsing speed, and support for

Element

: XPath [5].
Text il Among these, DOM pars-
(b) DOM node tree representation ing and SAX parsing are widely
Fig 1 E | supported. Document Object Model
9. L. Example (DOM) [30] parsing builds an

in-memory tree representation of an XML document by stoiisglements, attributes,
and values along with their relationships. (Other DOM nogees have been defined
by W3C [30]. We restrict ourselves to the most common onesmght, Attribute,
Text/Value.) A DOM node tree aids easy navigation of XML damnts and supports
XPath [5]. ADOM tree for a documentis shown in Figure 1. Thaesrof siblings in the
tree follows the order in which their elements appear in theutnent (a.k.a. document
order).

SAX parsing [21] is an event based parsing approach. It t-lgeight, fast, and
requires a smaller memory footprint than DOM parsing. Hosvean application is
responsible for maintaining an internal representatios @bcument if required. Newer
parsing models such as StAX [6] and VTD-XML were developedtprove over DOM
and SAX. The Binary XML standard [14], though not a parsingdelpwas proposed
to reduce the verbosity of XML documents and the cost of pgrdHowever, human-
readability is lost.

2.2 Prior Work on Parallel XML Parsing

Recently, Paret al.proposed a parallel XML DOM parsing algorithm called PXP for
multicore processors [23]. This approach first construckedeton of a document in
memory. Using the skeleton, the algorithm identifies churfihie document that can
be parsed in parallel. (Each chunk denotes a subtree of thlelfidoM tree.) This task
requires recursively traversing the skeleton until enocighnks are created. After the
chunks are created, they are parsed in parallel to creatB@id tree. Subsequently,
Panet al. proposed an improved algorithm to parallelize the skeletorstruction [24].

However, these algorithms have the following shortcomitigd motivate our re-
search. First, the skeleton requires extra memory thatapgtional to the number of
node in the DOM tree. Further, the partitioning scheme basedubtrees can cause
load imbalance on processing cores for XML documents withginlar or deep tree
structures €.g, TREEBANK with parts-of-speech tagging [29]). This schesaeerely
limits the granularity of parallelism that can be achievadd thus cannot scale with
increasing core count.



Wau et al. proposed a parallel approach XML parsing and schema vadiugs1].
Although their chunking scheme during parsing is similahiat ofParDOM, the partial
DOM trees for each chunk are linked sequentially during {pwetessing. Parabix [7],
though not a parallel DOM parsing algorithm, exploits pkeldtardware for speeding
up parsing by scanning the document faster. Rather thaingadyte-at-a-time from
an XML document, Parabix fetches and processes many byfesatiel.

2.3 Prior Work on Data Parallel Programming Models

The emergence of multicore processors demands new sdutiorexpressing paral-
lelism in software to fully exploit their capabilities [4]here has been a keen interest
in developing parallel programming models for this purpdegl's Ct [13] supports a
data parallel programming model and aims on forward scdfnfuture multicore pro-
cessors. Data Parallel Haskell is another effort to expi@tpower of multicores [8].

In recent years, programming models to support large-stiatebuted computing
on commodity machines have been developed. The MapRedwadigq and associ-
ated implementation was introduced by Google for perfoguiata intensive computa-
tions that can be distributed across thousands of machdhadddoop kit t p: / / had
oop. apache. or g) and Disco it t p: / / di scopr oj ect . or g) are two different
open source implementations of MapReduce. Phoenix [25limeed memory MapRe-
duce implementation. Recently, a distributed executiagirencalled Dyrad [17] was
proposed for coarse-grained data parallel applications.

3 Our Proposed Approach

We begin with a description of a serial algorithm for builgia DOM tree. We present

a scenario to motivate the design of our parallel algoritarDOM. We focus on XML
documents whose DOM trees can fit in main memory. (For vegelML documents,
other parsing model®(g, SAX [21]) should be used.) For ease of exposition, we focus
on elements, attributes, and text/values in XML documeXitaough a text can appear
anywhere within the start and end tag of an element, we shsildssume that it is
strictly enclosed by start and end element tagg, <aut hor >Jack</ aut hor >.
Later in Section 4.4, we will discuss how to handle the cemset hor >US<f i r st >
Jack</first>English</aut hor>. HereUS andEngl i sh are text associated
with aut hor according to the XML syntax.

3.1 A Serial Approach

A DOM tree can be built by extracting tokeres§, start and end tags) from a document
by reading it from the beginning. A stackis maintained and is initially empty. This
stack essentially stores the information of all the angssfim the DOM tree) of the
current element being processed in the document. When taestanent tag sayxe>

is read, a DOM nodd. is created for elemerd and any (attribute,value) pair that is
associated with the element is parsed and stored, by cgghmecessary DOM nodes.

If S is not empty, then this implies thdi’s parent node has already been created. Node



d. is linked as the rightmost child of its parent by consultihg top of stackS. (The
order of siblings follows the order in which the elementsegupn the document.) The
pair (d, e) is pushed onto the stack If e encloses text, then a DOM node for the text
is also created and linked as a “text” child&f When an end element tag saye>

is read,e is checked with the top of stack If the element names do not match, then
the parsing is aborted as the document is not well-formede@tise, the top of is
popped and the parsing continues. After the last charattkeaocumentis processed,
if S is empty, then the entire DOM tree has been constructed r@ies the document
is not well-formed.

3.2 A Paralldl Approach

Given an XML document, any data parallel algorithm wouldfpen the following
tasks: (a) construct partial DOM structures on chunks ofXNd. document, and (b)
link the partial DOM structures. Supposgrocessor cores are available, each core can
be assigned a set of chunks. Each core then processes otkeattaitime and establish
parent-child links as needed.

Example 1.Figure 2 shows three chunks 0, 8, and 20 whose partial DOM thege
been constructed. Suppose elemehsgndZ are child elements ok. The parent-child
links between them have been created as shown.

Motivating Scenario: If the

linking tasks were to be done
concurrently with the partial
DOM construction tasks, then

XML document

chunk 0 [<X> A
synchronizations necessary to
ensure that parent-child links are

chunk 8 |<Y> updated correctly without race

conditions. (Note that according
. the XML standard, there is an
chunk 20| <z> | , ordering among siblings based
on their relative positions in the
input document.) Itis also possi-
ble that a parent DOM node has
not been created yet, while its
child DOM node (present in a subsequent chunk) has alreaely beeated. As a re-
sult, an attempt to create a link to the parent would have it Waitexes can be used
for the purpose of synchronization. But can synchronizatiomitives be avoided al-
together? We believe this is possible, if we design a twosplgarallel algorithm. In
the first phase, partial DOM structures are created in paradler all the chunks. Once
all the chunks have been processed, in the second phasecfoparent node, with at
least one child in a different chunk, all its child nodes app® in subsequent chunks
are grouped together. Each group is processed by a sinddeaad all the missing
parent-child links are created. Such tasks can be exeauizatallel.

Fig. 2. Partial DOM construction & linking process



Challenges irParDOM Two challenges arise in the design of our two-phase parallel
algorithm. First, to obtain fine-grained parallelism, eablank should be created using
a criteria independent of the underlying tree structureddeument. Second, the partial
DOM structure (created for a chunk) must be located and drdarectly in the final
DOM tree.

To address the first challengearDOM adopts a flexible chunking scheme — each
chunk contains an arbitrary number of start and end tagsitkatot necessarily matched.
The required chunk size can be specified in many ways suclh) gse(aumber of bytes
per chunk, (b) the number of XML tags per chunk, or (c) the nandf start tags per
chunk. (We ensure that a start tag, end tag, or text is ndtapidss different chunks.)

Example 2.Consider an XML document in Figure 3. It is partitioned irthoge chunks
where thei* chunk ¢ > 0) starts from the3 = i + 1)*" start element tag.

To address the second challen§ayDOM uses a simple numbering scheme for
XML elements and a stack that stores the element numbers and names. Number-
ing schemes were proposed in the past for indexing and que¢¥ML data €.g,
Extended-preorder [20], Dewey [27]). Essentially, eadmant is assigned a unique
id. Relationships between elemengsy, parent-child, ancestor-descendant, sibling) in
an XML document tree can be inferred from their iBsrDOM usespreorder number-
ing, where each element’s id is the preorder number of its nodesr XML document
tree. The ids can be computed on-the-fly while extractingtskfrom a document.
Starting with a counter value of 0, each time a start elenanid seen, the counter is
incremented and its value is the preorder number of the eleni@e root element is
thus assigned the preorder number 1. In Figure 3, elenterdk, | ast,andtitl e
are assigned preorder numbers 1, 4, and 7, respectively.

While preorder numbers can
be used to determine the or-

Stack P . T
dering among siblings (by sort-
2authorl book - ing their ids), they cannot deter-
T book  <book> |__Chunk0 : .
' . <author> preoder (book) = mine parent-child or ancestor-
o <first> X <ffirst> _| . .
<dag> Y Slast> descendantrelationships between
</author> .
. <author> | Chunk1 glemeﬂts. The parent-child _re!a—
1, book] ¢ <first> A <ffirst> preoder (last) = « tionship between elements is in-
“.___<lauthor> — . .
<title> XML <title> | ferred using the stack that is
o 10000 <fprice> 1= e 2 itey=-  Maintained similarly to stacl§
S described in Section 3.1. Each

, entry in P is a pair(id,element)
Fig. 3. Three chunks and the state of stack P Suppose the serial algorithm is
applied to an input document.
When a new chunk is read, the top of stagkif P is not empty, denotes the ele-
ment in some previous chunk whose end tag has not yet beenreced. In addition,
exactly one entry inP denotes the parent of the first start element tag that appears
the current chunk (except for chunk 0).

Example 3.In Figure 3, the ids of the first elements in each chunk are shéter
chunk 0 is processed, the state of std¢ks shown. The top elememtut hor in P



denotes the parent dfast that appears in chunk 1. Similarly, the state of P is shown
after processing chunks 1 and 2.

When a chunk is parsed independently, if the state of stack known just after
processing the previous chunk, then the parent of everyasein the chunk can be
determined. Thus the partial DOM structure constructedHerchunk can be correctly
linked to the final DOM tree. At first glance, it may seem thatteahunk should be
parsed serially for correctness. However, this is not theecaonly stack” should be
correctly initialized, and this can be done without actyalbnstructing partial DOM
trees for a chunk.

One approach is to first read the entire document, computegee numbers (or
ids) of elements and update the staékappropriately. At each chunk boundary, the
stackP is copied and stored. We call this copyBfa chunk boundary stackonce all
chunk boundary staclkare created, the chunks can be parsed in parallel. Notedhat t
link the partial DOM structures into the final DOM tree, théerences to DOM nodes
of elements whose end tags were not present in the chunkdsheuhaintained.

4 |Implementing ParDOM

ParDOM can be conveniently implemented in a data parallel progrengmodel that
supportarap andsor t operators. Given a sequence of itemegg operation applies
a functionf to each item in the sequence. Parallelism can be exploitdzbth themap
andsort operators. For subsequent discussions, we will use the'temmap taskto
refer to a map operator being applied to a single item in a&ecg!
Figure 4 shows the over-
7777777777777777777777777777777777777777777 all sequence of tasks per-
formed byParDOM. Phase
I begins with chunk creation
that includes establishing
chunk boundaries, assign-
ing preorder numbers to el-
ements, and creating chunk

XML /
document: Chunk
— ! =
creation
boundary stacks. Then the

Phase | B i map tasks are run in paral-

77777777777777777777777777777777777777 lel on all the chunks — each

DOM trees on its chunk.
Note that as soon as the boundary of a chunk is establisheitsacklunk boundary
stack is constructed, a map task can be executed on that.chumip task also outputs
information regarding those elements whose parents ajppsame preceding chunks
along with their parent ids. Once all the map tasks compietBhase I, the informa-
tion output by the map tasks are grouped according to thenpaosle ids, using a sort
operation. For each parent id, its group is processed bytlgx@te map task. A map
task creates missing parent-child links between a parer¥i©de and all its child
DOM nodes in the group. It also ensures that siblings are auaent order. Sincex-



Algorithm 1. Chunk creation
Global: int nodeld « 0; int chunklId < 0; intArray[] firstNodeld; stackP; stackArray[] P.;

procedure ChunkCreate{ataln, size)
1 begin «— dataln;
2. end < begin + size + ¢; [* avoid splitting XML tags and going beyond EOF */
3. foreach (e, type) € [begin, end] do

4 switch typedo
5: case START:
6: nodeld++; I* Next preorder number */
7: if first START tag in chunthen
8 P.[chunkId] < P; [* Copy stackP */
o firstNodeld[chunkId] < nodeld;
end
10: P.push(nodeld, e);
11 break;
12: case END: P.pop(); break;
13: otherwise do nothing;
end
end

14 chunkld++;
15 dataln < end + 1;

actly onemap task creates the missing parent-child links, no locksiaeded. Next, we
describe the algorithmic details of each phasBanDOM.

4.1 Phasel - Chunk Creation

The steps performed during chunk creation are shown in Atlgor 1. Each invoca-
tion of ChunkCreate() identifies the boundaries of a single chunk, computes pegord
numbers for the elements in it, and constructs its chunk 8angnstack. The global
variables are used for preorder numbering of elements andtéoing chunk bound-
ary stacks. The input arguments akgaln, that points to the beginning of the current
chunk, and a suggested chunk size. Lines 1-2 set up the ctoumdbries, wheré is
chosen to ensure that a start tag, end tag, or text is notagpbiss two chunks, and that
the last chunk does not span beyond the end-of-file. Line Blgidenotes tokenization
of the chunk based on start and end XML tags. (The attributdsext/values are not
needed at this stage and are ignored.) As the document isgeed, stacl is copied
and stored when the first start tag is encountered in a chuimle @). Thus, a chunk
boundary stackP.[chunkId] is created. (This differs slightly from our earlier discus-
sion whereP would have been copied at the beginning of a chunk.) In axfdithe
preorder number assigned to this element is stored (Lin® ®hat during the execu-
tion of map tasks in Phase |, the element ids can be regederateectly. Finally, on
Line 15,dataln is initialized to the beginning of the next chunk. The nextication

of ChunkCreate() usesdataln as its input. Whether a document is well-formed or
not can be checked during chunk creation.



4.2 Phasel - Partial DOM construction

Once Algorithm 1 completes on a chunk, a map task processé¢shiunk to create
partial DOM trees. Algorithm 2 describes the steps involMedbcal stackT, initially
empty, is used to store an element’s id and a reference toOfgl Dode. It is updated
similar to stackP.

When a start of an elementis encountered, a DOM node is created, and the (at-
tribute,value) pairs are processed and stored (Line 6). i empty, there's parent
is in some previous chunk. The parenteofs known from the top entry of the chunk
boundary stack. A key-value pair is output where the key tEthe parent of and
the value is a reference to the DOM node édqiines 9-10). IfT" is not empty, ther’s
parent is the top entry &f. The DOM node foe is added as the rightmost child of its
parent (Line 11).

When an end of an elemeatis encountered, stack is checked. IfT" is empty,
thene’s start tag was present in some previous chunk. (Note’fheannot be empty
at this point for chunk 0 if the document is well-formed.) Téteunk boundary stack is
updated if a start tag was already encountered while proge#isis chunk (Line 17).
When a text is encountered, it is associated with its elemging stackl” (Line 21).

Finally, we pop all entries ifi” (Lines 24-28). These correspond to elements whose
end tags were absent in the current chunk, and thus may hddestdments in subse-
quent chunks. To link an element's DOM node correctly to édchode, a reference to
it should be available in Phase II. To achieve this, a keyeglair is output where the
key is the element’s id and value is a special DOM node thatadasithe reference to
its actual DOM node (Line 27). This is done to distinguists tspecial node from other
DOM node references corresponding to child nodes outpuiria LO.

Example 4.The partial DOM tree structures are shown in Figure 5 for thenks in
Figure 3. The key-value pairs are output for chunk 1 and clurithe key-value pairs
outputin Line 27 are not shown.

4.3 Phasell - Linking Partial DOM Trees

The linking process is
- : straightforward. The key-

value pairs output in
i [ ‘ Phase | are sorted by

the keyi.e, parent id.
(The value component

7 denotes areferenceto a
’ , , ~ DOM node.) For each

group of key-value pairs

10000 with the same key, a
output(2, DOMnode(Iast)) output(l DOMnode(ntIe)) map task creates parent-
no output | 3 output(1, DOMnode(author)) output(1, DOMnode(pn( child links between DOM

nodes, and ensures that
Fig. 5. Partial DOM construction in Phase | the child DOM nodes



Algorithm 2: Map task for Phase | iRrarDOM

procedure MapPhaselegin, end, chunkId)
1. stackT; /* Each entry contains a DOM node ptr and node id */
2. nodeld — firstNodeld[chunklId];
3. foreach (e, type) € [begin, end] do

4: switch typedo

5: case START:

6: create DOM node for elemeatincluding its attributes, and also store
nodeld

7: let d. denote a reference s DOM node

8: if Tis emptythen

9: (parentld,tag) « P.[chunkId)].top()

10: Output(parentld,d.) I* Like emitintermediate() of MapReduce */
else

11 addd. as the right most child of DOM node referencedByop()
end

12: T.push(de,nodeld);

13: nodeld++; break;

14: case END:

15: if Tis EMPTYthen

16: if a START tag was seen in chutiilen

17: P.[chunkId).pop();

end

ese

18: T.pop();
end

19: break;

20: case TEXT:

21 store text as child of DOM node referencedByop();

22: break;

23: otherwise do nothing;

end

24; whileT is EM PTY do

25 (nodeld,d.) < T.top()

26: create a special nodé containing the referencé.

27 Output(nodeld, d.) I* Like emitintermediate() of MapReduce */

28: T.pop()

end
end

are in document order. Each DOM node stores its node id andecarndered by sorting
on the node id. In the interest of space, the algorithm is ndired here.

Example 5.The partial DOM structures in Figure 5 are linked during ghés The
DOM nodes foraut hor ,ti t| e, andpri ce are linked as child nodes bbok (with
id 1) after sorting them based on their node ids. The DOM nodé d&st is linked to
aut hor (with id 2).

4.4 Extensionsand Memory Requirement

To support text that are not strictly enclosed within a stemti end tag the following
modifications are needed. If the element containing theapgears in the same chunk,
then it is linked to the text node. Otherwise, Algorithm 2 glibbe modified to output



a key-value pair (similar to Line 10) when a text appears aditht item. The parent is
known from the chunk boundary stack. In Phase I, this teltheilinked to its element
DOM node.

In ParDOM, the additional memory required to store chunk boundargkstale-
pends on the number of chunks and the maximum depth of thewermitree. On the
contrary, PXP [23] consumes additional memory that is liieahe number of tree
nodes for skeleton construction.

5 Experimental Results

We comparedParDOM with PXP [23] — a data parallel DOM parsing algorithm. We
obtained a Linux binary for PXP from the authors. All expegims were conducted on a
machine running Fedora 8 with a Intel Core 2 Quad processéd(@Hz). The machine
had 2GB RAM and 500GB disk space.

5.1 Using MapReduceto Implement ParDOM

We implementedParDOM using Phoenix [25], which is a shared memory MapReduce
implementation written in C. The code was compiled using @¢U gcc compiler
version 4.0.2. The MapReduce model provides a convenientfaraexpressing the
two phases oParDOM. This model has two phases, namely, the Map phase and the
Reduce phase. The input data is split, and each partitionoi&iged to a Map task.
Each Map task can generate a set of key-value pairs. TheriatBate key-value pairs
are merged and automatically grouped based on their kepeiReduce phase, each
intermediate key along with all the associated values isgssed by a Reduce task.
A MapReduce program written in Phoenix allows a user-defgpid(), map(), and re-
duce() procedures. In our MapReduce implementatid?aoDOM, split() implemented
Algorithm 1, map() implemented Algorithm 2, and reduce(plemented the steps de-
scribed in Section 4.3.

5.2 ParDOM vsPXP

ParDOMand PXP were evaluated on a variety of XML datasets with difiestructural
characteristics and sizésThese datasets were obtained from University of Washing-
ton [29]. Figure 6 shows the characteristics of each datagetms of its size, number
of elements and attributes, and maximum tree depth. DBLRa@w computer sci-
ence bibliographic information. SWISSPROT is a curatedeinosequence database.
TREEBANK captures linguistic structure of a Wall Street @l article using parts-
of-speech tagging. It has deep, irregular structure. LINBWY contains data from the
TPC-H Benchmark [28].

PXP requires scanning the input document during a pregapiase for construct-
ing a skeleton of the document. A skeleton is a light-weigptesentation of the docu-
ment’s structure and does not involve the creation of DOM tredes. Then the docu-
ment is partitioned into tasks (denoted by subtrees) usiagkeleton, and these tasks

4 These datasets are different from those used by the authBi$R[23].



are run in parallel to create partial DOM trees. Preparsing sk partitioning are
performed sequentially. Finally, PXP requires a postpset® phase to remove some
temporary DOM nodes.

ParDOM also requires scanning the input document during chunkioreéAlgo-
rithm 1). However, a careful implementation in Phoenix abous to interleave the
chunk creation phase with the Map tasks in Phase |. Note tiw a chunk boundary
stack is computed for a chunk, it is ready to be processed bgatisbk.

Measurements & Results

. Max #Of #Of
Dataset Size depth| elements | attributes For each dataset, we ran
DBLP 127MB 6 3332130 | 404276 ParDOM and PXP on 2,
3, and 4 cores. FoiPar-
SWISSPROT 109MB 5 2977031 | 2189859 DOM. chunks were cre-
TREEBANK| 82MB 36 2437666 1 ated by specifyingbytes
LINEITEM | 30MB | 3 1022976 1 per chunk and each chunk

was extended to contain the
Fig. 6. XML datasets and their characteristics ~ nearest end tag of an ele-
ment. The PXP code pro-
vided to us could not process XML documents beyond a certzéresid crashed during
preparsing. Therefore, we created smaller datasets o8MB; 16MB, and 32MB from
our original datasets. We measured the wall-clock time amdpuited the average over
three runs. Each dataset was read once before parsing sib ihagached in the file
system buffer to avoid 1/O while parsing.

To compute speedup, we ran a serial parsing algorithm @e8tiL) and PXP on one
core. Let us call them &5, andT'p x p, respectivelyParDOMs speedup was measured
by computing the ratio of’s; with its parallel parsing time. (The parallel parsing time
included the cost of chunk creation.) PXP’s speedup was uned$y computing the
ratio of Tpx p with its parallel parsing time. (The parallel parsing tinmeluded the
cost of preparsing.)

4 | ParDOM (8M) —+— | ParDOM (8M) ——
ParDOM (16M) - ParDOM (16M) -~

3.5 | ParDOM (32M) - 1 4| ParDOM (32M) -
3t PXP (8M) ~-a--- ] 35 ¢ PXP (8M) -
o5 PXP (16M) v~ parDOM, 3¢ PXP (16M) v

PXP (32M) Pa

Speedup
Speedup
N
(6)]

1.5 g 15 %
1 1t
0.5 0.5
0 : 0 :
2 3 4 2 3 4
# of cores # of cores
(a) LINEITEM (b) SWISSPROT

Fig. 7. Speedup measurements



SpeedupFigure 7(a) and 7(b) show the speeduafDOM and PXP for LINEITEM
and SWISSPROT, respectively. The chunk size of 256KB waectsl forParDOM,
beyond which the parallel parsing time did not improve digantly. Clearly,ParDOM
had better speedup than PXP at 4 cores for both LINEITEM andSSRROT.Par-
DOM achieved a speedup of around 2.5 with 4 processing corete (hat PXP crashed
for 32MB of LINEITEM dataset during preparsing phase, anddess not shown in the
plot.) Interestingly, PXP failed to parse TREEBANK and DBé&®en for 8MB dataset
sizes and crashed. The crash occurred in the preparsing.plmathese datasets, the
fanout at nodes other than the root were not large. FurtheEEBANK had deep tree
structures. This clearly demonstrates the superiorityaDOM over PXP for parallel
DOM parsing as it can process a variety of tree structureslasdment sizes.

Figure 8(a) shows the speedup fearDOM on all the four datasets, each of size
64MB. We achieved the best speedup of 2.61. We observeasimahds in the speedup
for ParDOMwhen the original datasets in Figure 6 were used.

2l SWISSPROT --4-— | DBLP —v—
TREEBANK & 2 osl LINEITEM ——v-— |
35+ DBLP —=— ] K2 : SWISSPROT ¢
a 3t LINEITEM —- W 1 c TREEBANK *
=] i 2L 06t $
e) e
[ 8
Q ©
& E
o
>
<
2 3 4 8 16 32 64
# of cores Dataset size (MB)

@
Fig. 8. (a) Speedup oParDOM (64MB). (b) Data scalability

Data Scalability: To measure hoviParDOM scales with increase in dataset size, we
measured the average parsing time (over 3 runs) for datagstsof 8MB, 16MB,
32MB, and 64MB. The results for 4 cores is plotted in Figure)8For instancePar-
DOM required 0.312 secs and 0.621 secs to process 32MB and 64VIBEEBANK,
respectively.

ForParDOM, we measured the effectiveness of our simple chunking selwanthe
distribution of load among the Map tasks in Phase I. We usedtlginal datasets in
Figure 6. A Map task that processed more elements creategl @M nodes. Figure 9
shows the mean and standard deviation of the number of eterpescessed per Map
task excluding the last Map task that can have a smaller chizek We observed that
for TREEBANK and LINEITEM the load was well-balanced amongptasks as com-
pared to DBLP and SWISSPROT. This is evident from the smaliexlues. DBLP and
SWISSPROT datasets contained text of varied lengths thaltegl in higher values.
Thus chunking based solely daytes per chunknay not be ideal for such datasets.

We also measured the load during Phase PafDOM, by considering the number
of child nodes that were linked per task, excluding the ramder (The root node of
each dataset had very large fanout.) The total, mean, andasth deviation for the



number of child links created are shown in Figure 9. Note thate tasks were required
for TREEBANK as compared to the other datasets because aagevef 1.5 child
nodes were linked per task. SWISSPROT had larger fanout gmodes as compared
to DBLP and this is reflected in the total number of child nottest were linked in
Phase II.

Load Balancing: Finally,

#;)glﬁ)lzrg?;sti Total # of parent-child link, W€ measured _hOW much
Dataset Phase | created in Phase |l time was spent in the Map
and Reduce phases in our
Mean (o] Total Mean o . .
] ParDOMimplementation. We
DBLP | 24338 15453 1670 5.3 56 used the original datasets
SWISSPRO[T22789.8 725.0, 4155 9.2 164 for this experiment. We ob-
TREEBANK| 23323.3 274.6| 1622 15 0.9 served that in all cases
LINEITEM | 29041.9 33.1| 425 5.4 48 the Reduce phase consumed
] less than 8% of the total
Fig.9. Load measurement time

6 Conclusions

ParDOM is a data parallel XML DOM parsing algorithm that can leveragulticore
processors for high performance XML parsifigrDOM offers fine-grained parallelism
by using a flexible chunking scheme that is oblivious to thecsure of the XML doc-
ument.ParDOM can be conveniently implemented in a data parallel langtizgesup-
portsmap andsort operations. Our empirical results show tliR#rDOM provides
better scalability than PXP [23] on commodity multicore gessors. Further, it can
process a wide variety of datasets as compared to PXP.

Acknowledgments We thank the authors of PXP for their code and the anonymous
reviewers for their insightful comments.
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