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Abstract. The extensible markup language XML has become the de facto stan-
dard for information representation and interchange on theInternet. XML pars-
ing is a core operation performed on an XML document for it to be accessed and
manipulated. This operation is known to cause performance bottlenecks in ap-
plications and systems that process large volumes of XML data. We believe that
parallelism is a natural way to boost performance. Leveraging multicore proces-
sors can offer a cost-effective solution, because future multicore processors will
support hundreds of cores, and will offer a high degree of parallelism in hardware.
We propose adata parallelalgorithm calledParDOM for XML DOM parsing,
that builds an in-memory tree structure for an XML document.ParDOMhas two
phases. In the first phase, an XML document is partitioned into chunks and parsed
in parallel. In the second phase, partial DOM node tree structures created during
the first phase, are linked together (in parallel) to build a complete DOM node
tree. ParDOM offers fine-grained parallelism by adopting a flexible chunking
scheme – each chunk can contain an arbitrary number of start and end XML tags
that are not necessarily matched.ParDOM can be conveniently implemented us-
ing a data parallel programming model that supportsmap andsort operations.
Through empirical evaluation, we show thatParDOM yields better scalability
than PXP [23] – a recently proposed parallel DOM parsing algorithm – on com-
modity multicore processors. Furthermore,ParDOM can process a wide-variety
of XML datasets with complex structures which PXP fails to parse.

1 Introduction

The extensible markup language XML has become the de facto standard for information
representation and exchange on the Internet. Recent years have witnessed a multitude of
applications and systems that use XML such as web services and service oriented archi-
tectures (SOAs) [16], grid computing, RSS feeds, ecommercesites, and most recently
the Office Open XML document standard (OOXML). Parsing is a core operation per-
formed before an XML document can be navigated, queried, or manipulated. Though
XML is simple to read and process by software, XML parsing is often reported to cause
performance bottlenecks for real-world applications [22,32]. For example, in a SOA
using web services technology, services are discovered, described, and invoked using
XML messages [10]. These messages can reach up to several megabytes in size, and
thus parsing can cause severe scalability problems.



Recently, high performance XML parsing has become a topic ofconsiderable inter-
est (e.g., XML Screamer [19], schema-specific parser [11], PXP [23, 24], Parabix [7]).
XMLScreamer and schema-specific parser leverage schema information for optimizing
tasks such as scanning, parsing, validation, and deserialization. On the other hand, PXP
and Parabix exploit parallel hardware to achieve high XML parsing performance. Our
work in this paper also exploits parallel hardware to achieve high parsing performance.

With the emergence of large-scale throughput oriented multicore processors [26][15],
we believe parallelism is a natural way to boost the performance of XML parsing.
Leveraging multicore processors can offer a cost-effective way to overcome the scala-
bility problems, given that future multicore processors will support hundreds of cores,
and thus, offer a high degree of parallelism in hardware. A data parallel programming
model offer numerous benefits for future multicore processors such as expressive power,
determinism, and portability [12]. For instance, traditional thread-based approaches suf-
fer from non-deterministic behavior and make programming difficult and error prone.
On the contrary, a program written in a data parallel language (e.g., Ct [13]) has deter-
ministic behavior whether running on one core or hundred cores. This eliminates data
races and improves programmer productivity. Thus, there has been a surge of interest to
develop data parallel models for forward scaling on future multicore processors [8, 12].

With these factors in mind, we propose adata parallel XML parsing algorithm
calledParDOM. In this paper, we focus onXML DOM (Document Object Model)
parsing [30], because it is easy to use by a programmer and provides full navigation
support to an application, and it is widely supported in open-source and commercial
tools (e.g., SAXON [18], Xerces [3], Intel Software Suite [1], MSXML [2]). Further,
DOM parsing poses a fundamental challenge of parallel tree construction. Since DOM
parsing requires documents to fit in main memory, we only consider XML documents
that are of several megabytes in size.

ParDOM is a two-phase algorithm. In the first phase, an XML document is parti-
tioned into chunks and are parsed in parallel. In the second phase, partial DOM node
tree structures created during the first phase, are linked together (in parallel) to build a
complete DOM node tree in memory. Our algorithm offers fine-grained parallelism by
adopting a flexible chunking scheme. Unlike a previous parallel algorithm called PXP
[23, 24], wherein chunks represent subtrees of a DOM tree,ParDOM creates chunks
that can contain an arbitrary number of start and end XML tagsthat are not necessarily
matched.ParDOM can be conveniently implemented using a data parallel program-
ming model that supportsmap andsort operators. Through empirical evaluation, we
show thatParDOMyields better scalability than PXP on commodity multicore proces-
sors. Furthermore,ParDOMcan process a wide-variety of XML datasets with complex
structures which PXP fails to parse.

2 Background & Motivation

2.1 XML Documents and Parsing Techniques

An XML document contains elements that are represented by start and end element
tags. Each element can contain other elements and values. Anelement can have a list
of (attribute, value) pairs associated with it. An XML document can be modeled as an



ordered labeled tree. A well-formed XML document follows the XML syntax rules. For
example, each element has a start tag and a matching end tag.

title id

2Jack Jill XML 50.00

price

book

Attribute

Element

Text Value

Root Element

author author

(b) DOM node tree representation

Fig. 1. Example

For an XML document to
be accessed and manipulated,
it should first be parsed. Many
XML parsing models have been
developed that trade off between
the ease of use, APIs exposed to
applications, memory footprint,
parsing speed, and support for
XPath [5].

Among these, DOM pars-
ing and SAX parsing are widely
supported. Document Object Model
(DOM) [30] parsing builds an

in-memory tree representation of an XML document by storingits elements, attributes,
and values along with their relationships. (Other DOM node types have been defined
by W3C [30]. We restrict ourselves to the most common ones: Element, Attribute,
Text/Value.) A DOM node tree aids easy navigation of XML documents and supports
XPath [5]. A DOM tree for a document is shown in Figure 1. The order of siblings in the
tree follows the order in which their elements appear in the document (a.k.a. document
order).

SAX parsing [21] is an event based parsing approach. It is light-weight, fast, and
requires a smaller memory footprint than DOM parsing. However, an application is
responsible for maintaining an internal representation ofa document if required. Newer
parsing models such as StAX [6] and VTD-XML were developed toimprove over DOM
and SAX. The Binary XML standard [14], though not a parsing model, was proposed
to reduce the verbosity of XML documents and the cost of parsing. However, human-
readability is lost.

2.2 Prior Work on Parallel XML Parsing

Recently, Panet al.proposed a parallel XML DOM parsing algorithm called PXP for
multicore processors [23]. This approach first constructs askeleton of a document in
memory. Using the skeleton, the algorithm identifies chunksof the document that can
be parsed in parallel. (Each chunk denotes a subtree of the final DOM tree.) This task
requires recursively traversing the skeleton until enoughchunks are created. After the
chunks are created, they are parsed in parallel to create theDOM tree. Subsequently,
Panet al.proposed an improved algorithm to parallelize the skeletonconstruction [24].

However, these algorithms have the following shortcomingsthat motivate our re-
search. First, the skeleton requires extra memory that is proportional to the number of
node in the DOM tree. Further, the partitioning scheme basedon subtrees can cause
load imbalance on processing cores for XML documents with irregular or deep tree
structures (e.g., TREEBANK with parts-of-speech tagging [29]). This schemeseverely
limits the granularity of parallelism that can be achieved,and thus cannot scale with
increasing core count.



Wu et al.proposed a parallel approach XML parsing and schema validation [31].
Although their chunking scheme during parsing is similar tothat ofParDOM, the partial
DOM trees for each chunk are linked sequentially during post-processing. Parabix [7],
though not a parallel DOM parsing algorithm, exploits parallel hardware for speeding
up parsing by scanning the document faster. Rather than reading a byte-at-a-time from
an XML document, Parabix fetches and processes many bytes inparallel.

2.3 Prior Work on Data Parallel Programming Models

The emergence of multicore processors demands new solutions for expressing paral-
lelism in software to fully exploit their capabilities [4].There has been a keen interest
in developing parallel programming models for this purpose. Intel’s Ct [13] supports a
data parallel programming model and aims on forward scalingfor future multicore pro-
cessors. Data Parallel Haskell is another effort to exploitthe power of multicores [8].

In recent years, programming models to support large-scaledistributed computing
on commodity machines have been developed. The MapReduce paradigm and associ-
ated implementation was introduced by Google for performing data intensive computa-
tions that can be distributed across thousands of machines [9]. Hadoop (http://had
oop.apache.org) and Disco (http://discoproject.org) are two different
open source implementations of MapReduce. Phoenix [25] is ashared memory MapRe-
duce implementation. Recently, a distributed execution engine called Dyrad [17] was
proposed for coarse-grained data parallel applications.

3 Our Proposed Approach

We begin with a description of a serial algorithm for building a DOM tree. We present
a scenario to motivate the design of our parallel algorithmParDOM. We focus on XML
documents whose DOM trees can fit in main memory. (For very large XML documents,
other parsing models (e.g., SAX [21]) should be used.) For ease of exposition, we focus
on elements, attributes, and text/values in XML documents.Although a text can appear
anywhere within the start and end tag of an element, we shall first assume that it is
strictly enclosed by start and end element tags,e.g., <author>Jack</author>.
Later in Section 4.4, we will discuss how to handle the case<author>US<first>
Jack</first>English</author>. HereUS andEnglish are text associated
with author according to the XML syntax.

3.1 A Serial Approach

A DOM tree can be built by extracting tokens (e.g., start and end tags) from a document
by reading it from the beginning. A stackS is maintained and is initially empty. This
stack essentially stores the information of all the ancestors (in the DOM tree) of the
current element being processed in the document. When a start element tag say<e>
is read, a DOM nodede is created for elemente and any (attribute,value) pair that is
associated with the element is parsed and stored, by creating the necessary DOM nodes.
If S is not empty, then this implies thatde’s parent node has already been created. Node



de is linked as the rightmost child of its parent by consulting the top of stackS. (The
order of siblings follows the order in which the elements appear in the document.) The
pair (de, e) is pushed onto the stackS. If e encloses text, then a DOM node for the text
is also created and linked as a “text” child ofde. When an end element tag say</e>
is read,e is checked with the top of stackS. If the element names do not match, then
the parsing is aborted as the document is not well-formed. Otherwise, the top ofS is
popped and the parsing continues. After the last character of the document is processed,
if S is empty, then the entire DOM tree has been constructed. Otherwise, the document
is not well-formed.

3.2 A Parallel Approach

Given an XML document, any data parallel algorithm would perform the following
tasks: (a) construct partial DOM structures on chunks of theXML document, and (b)
link the partial DOM structures. Supposen processor cores are available, each core can
be assigned a set of chunks. Each core then processes one chunk at-a-time and establish
parent-child links as needed.

Example 1.Figure 2 shows three chunks 0, 8, and 20 whose partial DOM trees have
been constructed. Suppose elementsY andZ are child elements ofX. The parent-child
links between them have been created as shown.

<X>

XXML document

Y
Z

 parent−child
links

<Y>

<Z>

chunk 8

chunk 20

chunk 0

Fig. 2. Partial DOM construction & linking process

Motivating Scenario: If the
linking tasks were to be done
concurrently with the partial
DOM construction tasks, then
synchronizationis necessary to
ensure that parent-child links are
updated correctly without race
conditions. (Note that according
the XML standard, there is an
ordering among siblings based
on their relative positions in the
input document.) It is also possi-
ble that a parent DOM node has
not been created yet, while its

child DOM node (present in a subsequent chunk) has already been created. As a re-
sult, an attempt to create a link to the parent would have to wait. Mutexes can be used
for the purpose of synchronization. But can synchronization primitives be avoided al-
together? We believe this is possible, if we design a two-phase parallel algorithm. In
the first phase, partial DOM structures are created in parallel over all the chunks. Once
all the chunks have been processed, in the second phase, for each parent node, with at
least one child in a different chunk, all its child nodes appearing in subsequent chunks
are grouped together. Each group is processed by a single task, and all the missing
parent-child links are created. Such tasks can be executed in parallel.



Challenges inParDOM: Two challenges arise in the design of our two-phase parallel
algorithm. First, to obtain fine-grained parallelism, eachchunk should be created using
a criteria independent of the underlying tree structure of adocument. Second, the partial
DOM structure (created for a chunk) must be located and linked correctly in the final
DOM tree.

To address the first challenge,ParDOM adopts a flexible chunking scheme – each
chunk contains an arbitrary number of start and end tags thatare not necessarily matched.
The required chunk size can be specified in many ways such as (a) the number of bytes
per chunk, (b) the number of XML tags per chunk, or (c) the number of start tags per
chunk. (We ensure that a start tag, end tag, or text is not split across different chunks.)

Example 2.Consider an XML document in Figure 3. It is partitioned into three chunks
where theith chunk (i ≥ 0) starts from the(3 ∗ i + 1)th start element tag.

To address the second challenge,ParDOM uses a simple numbering scheme for
XML elements and a stackP that stores the element numbers and names. Number-
ing schemes were proposed in the past for indexing and querying XML data (e.g.,
Extended-preorder [20], Dewey [27]). Essentially, each element is assigned a unique
id. Relationships between elements (e.g., parent-child, ancestor-descendant, sibling) in
an XML document tree can be inferred from their ids.ParDOMusespreorder number-
ing, where each element’s id is the preorder number of its node inthe XML document
tree. The ids can be computed on-the-fly while extracting tokens from a document.
Starting with a counter value of 0, each time a start element tag is seen, the counter is
incremented and its value is the preorder number of the element. The root element is
thus assigned the preorder number 1. In Figure 3, elementsbook, last, andtitle
are assigned preorder numbers 1, 4, and 7, respectively.

2,author

1, book

1, book

Stack P

Chunk 0

Chunk 1
preoder (last) = 4

Chunk 2
preoder (title) = 7

<book>
    <author>
         <first> X </first>
         <last> Y </last>
    </author>
    <author>
          <first> A </first>
    </author>
    <title> XML </title>
    <price> 100.00 </price>
</book>

preoder (book) = 1

Fig. 3. Three chunks and the state of stack P

While preorder numbers can
be used to determine the or-
dering among siblings (by sort-
ing their ids), they cannot deter-
mine parent-child or ancestor-
descendant relationships between
elements. The parent-child rela-
tionship between elements is in-
ferred using the stackP that is
maintained similarly to stackS
described in Section 3.1. Each
entry inP is a pair(id,element).
Suppose the serial algorithm is
applied to an input document.

When a new chunk is read, the top of stackP , if P is not empty, denotes the ele-
ment in some previous chunk whose end tag has not yet been encountered. In addition,
exactly one entry inP denotes the parent of the first start element tag that appearsin
the current chunk (except for chunk 0).

Example 3.In Figure 3, the ids of the first elements in each chunk are shown. After
chunk 0 is processed, the state of stackP is shown. The top elementauthor in P



denotes the parent oflast that appears in chunk 1. Similarly, the state of P is shown
after processing chunks 1 and 2.

When a chunk is parsed independently, if the state of stackP is known just after
processing the previous chunk, then the parent of every element in the chunk can be
determined. Thus the partial DOM structure constructed forthe chunk can be correctly
linked to the final DOM tree. At first glance, it may seem that each chunk should be
parsed serially for correctness. However, this is not the case – only stackP should be
correctly initialized, and this can be done without actually constructing partial DOM
trees for a chunk.

One approach is to first read the entire document, compute preorder numbers (or
ids) of elements and update the stackP appropriately. At each chunk boundary, the
stackP is copied and stored. We call this copy ofP a chunk boundary stack. Once all
chunk boundary stacksare created, the chunks can be parsed in parallel. Note that to
link the partial DOM structures into the final DOM tree, the references to DOM nodes
of elements whose end tags were not present in the chunk should be maintained.

4 Implementing ParDOM

ParDOM can be conveniently implemented in a data parallel programming model that
supportsmap andsort operators. Given a sequence of items, amap operation applies
a functionf to each item in the sequence. Parallelism can be exploited for both themap
andsort operators. For subsequent discussions, we will use the term“a map task” to
refer to a map operator being applied to a single item in a sequence.

XML
document

map

map

map

map

map

sort
creation
Chunk

tree
DOM

Phase I Phase II

Fig. 4. Sequence of tasks inParDOM

Figure 4 shows the over-
all sequence of tasks per-
formed byParDOM. Phase
I begins with chunk creation
that includes establishing
chunk boundaries, assign-
ing preorder numbers to el-
ements, and creating chunk
boundary stacks. Then the
map tasks are run in paral-
lel on all the chunks – each
map task constructs partial
DOM trees on its chunk.

Note that as soon as the boundary of a chunk is established andits chunk boundary
stack is constructed, a map task can be executed on that chunk. A map task also outputs
information regarding those elements whose parents appearin some preceding chunks
along with their parent ids. Once all the map tasks complete,in Phase II, the informa-
tion output by the map tasks are grouped according to the parent node ids, using a sort
operation. For each parent id, its group is processed by exactly one map task. A map
task creates missing parent-child links between a parent DOM node and all its child
DOM nodes in the group. It also ensures that siblings are in document order. Sinceex-



Algorithm 1: Chunk creation

Global: int nodeId← 0; int chunkId← 0; intArray[] firstNodeId; stackP ; stackArray[]Pc;

procedure ChunkCreate(dataIn, size)
begin← dataIn;1:
end← begin + size + δ; /* avoid splitting XML tags and going beyond EOF */2:
foreach (e, type) ∈ [begin, end] do3:

switch typedo4:
case START:5:

nodeId++; /* Next preorder number */6:
if first START tag in chunkthen7:

Pc[chunkId]← P ; /* Copy stackP */8:
firstNodeId[chunkId]← nodeId;9:

end
P.push(nodeId, e);10:
break;11:

case END: P.pop(); break;12:
otherwise do nothing;13:

end
end
chunkId++;14:
dataIn← end + 1;15:

actly onemap task creates the missing parent-child links, no locks are needed. Next, we
describe the algorithmic details of each phase inParDOM.

4.1 Phase I - Chunk Creation

The steps performed during chunk creation are shown in Algorithm 1. Each invoca-
tion of ChunkCreate() identifies the boundaries of a single chunk, computes preorder
numbers for the elements in it, and constructs its chunk boundary stack. The global
variables are used for preorder numbering of elements and for storing chunk bound-
ary stacks. The input arguments aredataIn, that points to the beginning of the current
chunk, and a suggested chunk size. Lines 1-2 set up the chunk boundaries, whereδ is
chosen to ensure that a start tag, end tag, or text is not splitacross two chunks, and that
the last chunk does not span beyond the end-of-file. Line 3 simply denotes tokenization
of the chunk based on start and end XML tags. (The attributes and text/values are not
needed at this stage and are ignored.) As the document is processed, stackP is copied
and stored when the first start tag is encountered in a chunk (Line 8). Thus, a chunk
boundary stackPc[chunkId] is created. (This differs slightly from our earlier discus-
sion whereP would have been copied at the beginning of a chunk.) In addition, the
preorder number assigned to this element is stored (Line 9) so that during the execu-
tion of map tasks in Phase I, the element ids can be regenerated correctly. Finally, on
Line 15,dataIn is initialized to the beginning of the next chunk. The next invocation
of ChunkCreate() usesdataIn as its input. Whether a document is well-formed or
not can be checked during chunk creation.



4.2 Phase I - Partial DOM construction

Once Algorithm 1 completes on a chunk, a map task processes that chunk to create
partial DOM trees. Algorithm 2 describes the steps involved. A local stackT , initially
empty, is used to store an element’s id and a reference to its DOM node. It is updated
similar to stackP .

When a start of an elemente is encountered, a DOM node is created, and the (at-
tribute,value) pairs are processed and stored (Line 6). IfT is empty, thene’s parent
is in some previous chunk. The parent ofe is known from the top entry of the chunk
boundary stack. A key-value pair is output where the key denotes the parent ofe and
the value is a reference to the DOM node fore (Lines 9-10). IfT is not empty, thene’s
parent is the top entry ofT . The DOM node fore is added as the rightmost child of its
parent (Line 11).

When an end of an elemente is encountered, stackT is checked. IfT is empty,
thene’s start tag was present in some previous chunk. (Note thatT cannot be empty
at this point for chunk 0 if the document is well-formed.) Thechunk boundary stack is
updated if a start tag was already encountered while processing this chunk (Line 17).
When a text is encountered, it is associated with its elementusing stackT (Line 21).

Finally, we pop all entries inT (Lines 24-28). These correspond to elements whose
end tags were absent in the current chunk, and thus may have child elements in subse-
quent chunks. To link an element’s DOM node correctly to a child node, a reference to
it should be available in Phase II. To achieve this, a key-value pair is output where the
key is the element’s id and value is a special DOM node that contains the reference to
its actual DOM node (Line 27). This is done to distinguish this special node from other
DOM node references corresponding to child nodes output in Line 10.

Example 4.The partial DOM tree structures are shown in Figure 5 for the chunks in
Figure 3. The key-value pairs are output for chunk 1 and chunk2. The key-value pairs
output in Line 27 are not shown.

4.3 Phase II - Linking Partial DOM Trees

author

firstlast title price

A XMLY 100.00

output(2,DOMnode(last))
output(1,DOMnode(author)) output(1,DOMnode(price))

output(1,DOMnode(title))

first

book

author

X

no output

Fig. 5. Partial DOM construction in Phase I

The linking process is
straightforward. The key-
value pairs output in
Phase I are sorted by
the key i.e., parent id.
(The value component
denotes a reference to a
DOM node.) For each
group of key-value pairs
with the same key, a
map task creates parent-
child links between DOM
nodes, and ensures that
the child DOM nodes



Algorithm 2: Map task for Phase I inParDOM

procedure MapPhaseI(begin, end, chunkId)
stackT ; /* Each entry contains a DOM node ptr and node id */1:
nodeId← firstNodeId[chunkId];2:
foreach (e, type) ∈ [begin, end] do3:

switch typedo4:
case START:5:

create DOM node for elemente including its attributes, and also store6:
nodeId
let de denote a reference toe’s DOM node7:
if T is emptythen8:

(parentId, tag)← Pc[chunkId].top()9:
Output(parentId, de) /* Like emitIntermediate() of MapReduce */10:

else
addde as the right most child of DOM node referenced byT.top()11:

end
T.push(de, nodeId);12:
nodeId++; break;13:

case END:14:
if T is EMPTYthen15:

if a START tag was seen in chunkthen16:
Pc[chunkId].pop();17:

end
else

T.pop();18:
end
break;19:

case TEXT:20:
store text as child of DOM node referenced byT.top();21:
break;22:

otherwise do nothing;23:
end
while T isEMPTY do24:

(nodeId, de)← T.top()25:
create a special noded∗ containing the referencede26:
Output(nodeId, d∗) /* Like emitIntermediate() of MapReduce */27:
T.pop()28:

end
end

are in document order. Each DOM node stores its node id and canbe ordered by sorting
on the node id. In the interest of space, the algorithm is not outlined here.

Example 5.The partial DOM structures in Figure 5 are linked during phase II. The
DOM nodes forauthor,title, andprice are linked as child nodes ofbook (with
id 1) after sorting them based on their node ids. The DOM node for last is linked to
author (with id 2).

4.4 Extensions and Memory Requirement

To support text that are not strictly enclosed within a startand end tag the following
modifications are needed. If the element containing the textappears in the same chunk,
then it is linked to the text node. Otherwise, Algorithm 2 should be modified to output



a key-value pair (similar to Line 10) when a text appears as the first item. The parent is
known from the chunk boundary stack. In Phase II, this text will be linked to its element
DOM node.

In ParDOM, the additional memory required to store chunk boundary stacks de-
pends on the number of chunks and the maximum depth of the document tree. On the
contrary, PXP [23] consumes additional memory that is linear in the number of tree
nodes for skeleton construction.

5 Experimental Results

We comparedParDOM with PXP [23] – a data parallel DOM parsing algorithm. We
obtained a Linux binary for PXP from the authors. All experiments were conducted on a
machine running Fedora 8 with a Intel Core 2 Quad processor (2.40GHz). The machine
had 2GB RAM and 500GB disk space.

5.1 Using MapReduce to Implement ParDOM

We implementedParDOMusing Phoenix [25], which is a shared memory MapReduce
implementation written in C. The code was compiled using theGNU gcc compiler
version 4.0.2. The MapReduce model provides a convenient way for expressing the
two phases ofParDOM. This model has two phases, namely, the Map phase and the
Reduce phase. The input data is split, and each partition is provided to a Map task.
Each Map task can generate a set of key-value pairs. The intermediate key-value pairs
are merged and automatically grouped based on their key. In the Reduce phase, each
intermediate key along with all the associated values is processed by a Reduce task.
A MapReduce program written in Phoenix allows a user-definedsplit(), map(), and re-
duce() procedures. In our MapReduce implementation ofParDOM, split() implemented
Algorithm 1, map() implemented Algorithm 2, and reduce() implemented the steps de-
scribed in Section 4.3.

5.2 ParDOM vs PXP

ParDOMand PXP were evaluated on a variety of XML datasets with different structural
characteristics and sizes.4 These datasets were obtained from University of Washing-
ton [29]. Figure 6 shows the characteristics of each datasetin terms of its size, number
of elements and attributes, and maximum tree depth. DBLP contains computer sci-
ence bibliographic information. SWISSPROT is a curated protein sequence database.
TREEBANK captures linguistic structure of a Wall Street Journal article using parts-
of-speech tagging. It has deep, irregular structure. LINEITEM contains data from the
TPC-H Benchmark [28].

PXP requires scanning the input document during a preparsing phase for construct-
ing a skeleton of the document. A skeleton is a light-weight representation of the docu-
ment’s structure and does not involve the creation of DOM tree nodes. Then the docu-
ment is partitioned into tasks (denoted by subtrees) using the skeleton, and these tasks

4 These datasets are different from those used by the authors of PXP [23].



are run in parallel to create partial DOM trees. Preparsing and task partitioning are
performed sequentially. Finally, PXP requires a postprocessing phase to remove some
temporary DOM nodes.

ParDOM also requires scanning the input document during chunk creation (Algo-
rithm 1). However, a careful implementation in Phoenix allows us to interleave the
chunk creation phase with the Map tasks in Phase I. Note that once a chunk boundary
stack is computed for a chunk, it is ready to be processed by a Map task.

Dataset Size # of
elements

# of
attributes

4042766127MB

SWISSPROT

depth
Max

109MB 5

TREEBANK

DBLP

3682MB 1

LINEITEM 30MB 3 1

2189859

3332130

2977031

2437666

1022976

Fig. 6. XML datasets and their characteristics

Measurements & Results
For each dataset, we ran
ParDOM and PXP on 2,
3, and 4 cores. ForPar-
DOM, chunks were cre-
ated by specifyingbytes
per chunk, and each chunk
was extended to contain the
nearest end tag of an ele-
ment. The PXP code pro-

vided to us could not process XML documents beyond a certain size and crashed during
preparsing. Therefore, we created smaller datasets of size8MB, 16MB, and 32MB from
our original datasets. We measured the wall-clock time and computed the average over
three runs. Each dataset was read once before parsing so thatit is cached in the file
system buffer to avoid I/O while parsing.

To compute speedup, we ran a serial parsing algorithm (Section 3.1) and PXP on one
core. Let us call them asTs andTPXP , respectively.ParDOM’s speedup was measured
by computing the ratio ofTs with its parallel parsing time. (The parallel parsing time
included the cost of chunk creation.) PXP’s speedup was measured by computing the
ratio of TPXP with its parallel parsing time. (The parallel parsing time included the
cost of preparsing.)
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Speedup:Figure 7(a) and 7(b) show the speedup ofParDOMand PXP for LINEITEM
and SWISSPROT, respectively. The chunk size of 256KB was selected forParDOM,
beyond which the parallel parsing time did not improve significantly. Clearly,ParDOM
had better speedup than PXP at 4 cores for both LINEITEM and SWISSPROT.Par-
DOMachieved a speedup of around 2.5 with 4 processing cores. (Note that PXP crashed
for 32MB of LINEITEM dataset during preparsing phase, and hence is not shown in the
plot.) Interestingly, PXP failed to parse TREEBANK and DBLPeven for 8MB dataset
sizes and crashed. The crash occurred in the preparsing phase. In these datasets, the
fanout at nodes other than the root were not large. Further, TREEBANK had deep tree
structures. This clearly demonstrates the superiority ofParDOM over PXP for parallel
DOM parsing as it can process a variety of tree structures anddocument sizes.

Figure 8(a) shows the speedup forParDOM on all the four datasets, each of size
64MB. We achieved the best speedup of 2.61. We observed similar trends in the speedup
for ParDOMwhen the original datasets in Figure 6 were used.
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Fig. 8. (a) Speedup ofParDOM (64MB). (b) Data scalability

Data Scalability: To measure howParDOM scales with increase in dataset size, we
measured the average parsing time (over 3 runs) for datasetssize of 8MB, 16MB,
32MB, and 64MB. The results for 4 cores is plotted in Figure 8(b). For instance,Par-
DOM required 0.312 secs and 0.621 secs to process 32MB and 64MB ofTREEBANK,
respectively.

ForParDOM, we measured the effectiveness of our simple chunking scheme on the
distribution of load among the Map tasks in Phase I. We used the original datasets in
Figure 6. A Map task that processed more elements created more DOM nodes. Figure 9
shows the mean and standard deviation of the number of elements processed per Map
task excluding the last Map task that can have a smaller chunksize. We observed that
for TREEBANK and LINEITEM the load was well-balanced among Map tasks as com-
pared to DBLP and SWISSPROT. This is evident from the smallerσ values. DBLP and
SWISSPROT datasets contained text of varied lengths that resulted in higherσ values.
Thus chunking based solely onbytes per chunkmay not be ideal for such datasets.

We also measured the load during Phase II ofParDOM, by considering the number
of child nodes that were linked per task, excluding the root node. (The root node of
each dataset had very large fanout.) The total, mean, and standard deviation for the



number of child links created are shown in Figure 9. Note thatmore tasks were required
for TREEBANK as compared to the other datasets because an average of 1.5 child
nodes were linked per task. SWISSPROT had larger fanout among nodes as compared
to DBLP and this is reflected in the total number of child nodesthat were linked in
Phase II.

SWISSPROT

TREEBANK

DBLP

Mean σ

# of elements
per Map task 

Mean σTotal

24338.6 1545.3 1670 5.3 5.6

22789.8 725.0 4155 9.2 16.4

23323.3 274.6 1622 1.5 0.9

29041.9 33.1 425 5.4 4.8LINEITEM

Total # of parent−child links

Phase I created in Phase IIDataset

Fig. 9. Load measurement

Load Balancing: Finally,
we measured how much
time was spent in the Map
and Reduce phases in our
ParDOM implementation. We
used the original datasets
for this experiment. We ob-
served that in all cases
the Reduce phase consumed
less than 8% of the total
time.

6 Conclusions

ParDOM is a data parallel XML DOM parsing algorithm that can leverage multicore
processors for high performance XML parsing.ParDOMoffers fine-grained parallelism
by using a flexible chunking scheme that is oblivious to the structure of the XML doc-
ument.ParDOMcan be conveniently implemented in a data parallel languagethat sup-
portsmap andsort operations. Our empirical results show thatParDOM provides
better scalability than PXP [23] on commodity multicore processors. Further, it can
process a wide variety of datasets as compared to PXP.
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